If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+40x-1125=0
a = 1; b = 40; c = -1125;
Δ = b2-4ac
Δ = 402-4·1·(-1125)
Δ = 6100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6100}=\sqrt{100*61}=\sqrt{100}*\sqrt{61}=10\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-10\sqrt{61}}{2*1}=\frac{-40-10\sqrt{61}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+10\sqrt{61}}{2*1}=\frac{-40+10\sqrt{61}}{2} $
| −12+7q=−40 | | −48+10q=32 | | 4x-42+2x^2=0 | | −5+15p=−20 | | t^2+5t-25=0 | | 8+4y=−28 | | 1+8z=9 | | 50+7p=20 | | 36+2p=16 | | 18+5q=3 | | -65+6x=-11 | | 14=5x=28 | | 6/x-1+5x/x+1=5 | | 9w-5=49 | | (3/2x-1)(3/2x+1)= | | 7-2g=2-5g | | x^2-16x-384=0 | | x^2-16x-374=0 | | 10x^2-80x-3840=0 | | 3t^2+10t=168 | | 20-(x/4)=12 | | 8x+(400-x)=3534 | | {-0,5;3}÷2x+1=0 | | 4x+3x+(5x+4)=180 | | (4x+2)(x-3)÷2x+1=0 | | x+2+x=315 | | 500*x+1200(920-x)=83800 | | d(d-2)=48 | | (x+2)(x-2)(2x)(x/2)=45 | | 8x+3.5=-7+2.0 | | 2m+10/25=4 | | 25x+6=55 |